chromatographed **(15% MeOH/CHCl,)** to provide **4.3** *mg* **(57%)** of the dehalogenated tetraol 21 as a colorless film; $[\alpha]_D = +55.5^\circ$ *(c* **0.0059, CHClJ;** *JR* (film, **cm-')3391,2922; lH** *NMR* **(500** *MHz,* $J_{3,4} = 9.2$ Hz, 1 H, H_3), 3.93 **(dd,** $J_{1/2}$ **_{1/2g} = 2.6 Hz,** $J_{1/2}$ **_{2g} = 10.5 ¹** Hz , **1** H, H_1), **3.85** (dd, $J_{g',g'} = 3.2$ Hz, $J_{gem} = 11.9$ Hz, 1 H, $H_{g'}$), **3.81** (dd, $J_{6,6} = 2.0$ Hz, $J_{gem} = 11.3$ Hz, 1 H, H_6), 3.64-3.74 (m, $\mathbf{Hz}_1 \mathbf{J}_{2,3} = 8.7 \mathbf{Hz}, 1 \mathbf{H}, H_2$), 3.42 **(8, 3 H, OCH₃)**, 3.22 **(dd**, $\mathbf{J}_{4,3'}$ $J_{\text{gen}} = 11.4 \text{ Hz}, 1 \text{ H}, H_{\text{2°eq}}$), 2.07 (dd, $J_{4,3} = 9.2 \text{ Hz}, J_{4,5} = 9.9 \text{ Hz},$ *If?,),* **1.43 (a, 6 H,** isopropylidene **CH,'s); 13C NMR** (90 **MHz, 62.9,55.5,45.4,33.2, 26.8,26.7;** FAB **MS** *m/e* **365 (MH+, 21,333** (2), 242 (100); *HR FAB MS calcd for* $C_{16}H_{29}O_9$ **365.1812 (MH⁺),** found 365.1815. Anal. Calcd for C₁₆H₂₈O₉: C, 52.74; H, 7.75. Found: C, 52.45; H, 7.50. **CDCl₃**) δ **4.79** (d, $J_{1,2} = 3.9$ Hz, 1 H, H_1), 3.94 (dd, $J_{3,2} = 8.7$ Hz, **3 H,** *H_e*, *H*_b^{*I*}, *H*₀^{*l*}, **3.57**-3.63 (m, 2 H, *H*_g, *H*_g), 3.51 (dd, *J*_{2,1} = 3.9 $\mathbf{H2}, \mathbf{J2}_3 = 8.7 \mathbf{H2}, 1 \mathbf{H}, \mathbf{H_2}, 3.42 \text{ (8, 3 H, OCl}_3), 3.22 \text{ (dd, } J_{13}, 2)$
 $\mathbf{J} = J_{4/45} = 9.1 \mathbf{H2}, 1 \mathbf{H}, H_4$), 2.08 (ddd, $J_{2\infty,1'} = J_{2\infty,3'} = 2.6 \mathbf{H2},$ **1** H, H_4), **1.95** (ddd, $J_{\text{2'ax},1'} = J_{\text{2'ax},3'} = \tilde{J}_{\text{gen}} = 10.4-11.5 \text{ Hz}, 1 \text{ H},$ **CDClJ** *6* **110.8,99.4,79.8, 77.9,76.2,74.7,73.9,70.0,68.8,63.1,**

Methyl 4-Deoxy-4-C-(1,2-dideoxy-β-D-gluco-hexo**pyrrmor-l-yl)-a-Pgluco-hexopyranoside (22). A** solution of disaccharide **21 (5.5** mg, **0.015** mmol) in methanol **(2** mL) was treated with p-toluenesulfonic acid. After **15** min, the solution was treated with mildly basic ion exchange resin, filtered, and concentrated under reduced pressure. **The** residue **was** chromatographed (20% MeOH/CHCl₃) to provide 4.3 mg (88%) of the fully deprotected disaccharide 22 as a white film: $[\alpha]_D =$ t **he fully deprotected disaccharide 22 as a white film:** $[\alpha]_D = +73.8^{\circ}$ (c 0.0037, CHCl₃); IR (film, cm⁻¹) 3398, 2923; ¹H NMR $(500 \text{ MHz}, \text{CD}_3\text{OD}) \delta 4.67 \text{ (d, } J_{1,2} = 3.8 \text{ Hz}, 1 \text{ H}, H_1)$, 3.86 (dm, $J_{1/2ax} = 11.8 \text{ Hz}, 1 \text{ H}, H_{1}$, $3.83 \text{ (dd, } J_{3,2} = 9.5 \text{ Hz}, J_{3,4} = 10.2 \text{ Hz},$ $(d\mathbf{d}, J_{6,5} = 2.3 \text{ Hz}, J_{gem} = 11.5 \text{ Hz}, 1 \text{ H}, H_6), 3.74 \text{ (ddd}, J_{5,6} = 2.3 \text{ Hz})$ \overline{Hz} , $J_{5,6} = 4.8$ Hz, $J_{5,4} = 10.5$ Hz, 1 H, H_5), 3.66 (dd, $J_{6,5} = 5.8$ Hz, $J_{gem} = 11.5$ Hz, 1 H, H_0 , 3.65 (dd, $J_{6',b'} = 5.3$ Hz, $J_{gem} = 11.3$ Hz, 1 H, $H_{c'}$). 3.52 (ddd, $J_{3'2'eq} = 5.0$ Hz, $J_{5',4'} = 8.7$ Hz, $J_{3'2'eq} = 11.6$ $J_{1'2xx} = 11.8 \text{ Hz}, 1 \text{ H}, H_{1'}, 3.83 \text{ (dd, } J_{3,2} = 9.5 \text{ Hz}, J_{3,4} = 10.2 \text{ Hz}, 1 \text{ H}, H_3$, 3.82 (dd, $J_{6',6'} = 2.0 \text{ Hz}, J_{gen} = 11.3 \text{ Hz}, 1 \text{ H}, H_{6'}, 3.79 \text{ Hz}, 1 \text{ H}, H_{7}, 3.81 \text{ Hz}, 1 \text{ Hz},$ \overline{A} , \overline{B} , \overline{B} , \overline{B} , \overline{B} = 10.5 **Hz**, 1 **H**, \overline{H}_5), 3.66 (dd, $J_{6,5}$) **11.5 Hz, 1 H,** H_6 **), 3.65 (dd,** $J_{6',5'}$ **) 1 H**, H_3), 3.82 (dd, $J_{e, e} = 2.0$ Hz, $J_{gem} = 11.3$ Hz, $\overrightarrow{1H}$, H_{e}), 3.79 (dd, $J_{6, 6} = 2.3$ Hz, $J_{gem} = 11.5$ Hz, 1 H, H_6), 3.74 (ddd, $J_{6, 6} = 2.3$ Hz, $J_{gem} = 11.5$ Hz, 1 H, H_6), 3.74 (ddd, $J_{6,$ $($ a, 3 **H**, OCH₂), 3.18 $(dd, J_{4,3} = J_{4,5} = 8.7-9.3$ **Hz**, 1 **H**, H_{4}), 3.13 (ddd, $J_{2\epsilon q,1'} = 1.9$ Hz, $J_{2\epsilon q,3'} = 5.0$ Hz, $J_{gen} = 12.6$ Hz, 1 H, $H_{2\epsilon q}$)
(ddd, $J_{2\epsilon q,1'} = 1.9$ Hz, $J_{2\epsilon q,3'} = 5.0$ Hz, $J_{gen} = 12.6$ Hz, 1 H, $H_{2\epsilon q}$)
(ddd, $J_{4,1'} = 2.5$ Hz, $J_{4,3} = J_{4,5} = 10.2-10.5$ Hz, **70.8, 70.7, 64.1, 63.0, 55.5, 47.6, 38.5.** Anal. Calcd for $(\text{ddd}, J_{\mathcal{S}, \mathcal{S}} = 2.0 \text{ Hz}, J_{\mathcal{S}, \mathcal{S}} = 5.3 \text{ Hz}, J_{\mathcal{S}, \mathcal{S}} = 9.3 \text{ Hz}, 1 \text{ H}, H_{\mathcal{S}}), 1.90$ $(\text{ddd}, J_{2^{reg},1'} = 1.9 \text{ Hz}, J'_{2^{reg},3'} = 5.0 \text{ Hz}, J_{gem} = 12.6 \text{ Hz}, 1 \text{ H}, H_{2^{eq}},$ $(\text{ddd}, J_{\text{Z}ax,1'} = J_{\text{Z}ax,3'} = 11.6 - 11.8 \text{ Hz}, J_{\text{gem}} = 12.6 \text{ Hz}, 1 \text{ H}, H_{\text{Z}ax};$ ¹³C **NMR** (90 **MHz**, CD₃OD) *δ* 101.3, 82.3, 75.4, 75.0, 74.2, 73.1, **Cl3H%Og*H20 C, 45.61; H, 7.66.** Found **C,** *45.60;* **H, 7.40.** $6.3 \text{ Hz}, J_{b',4'}$

Acknowledgment. We would like to thank the National Institutes of Health for financial support (GM **39512).** We **also** wish to thank John Tellew for helpful discussions and suggestions.

Silicon-Promoted Ring Contractions in the Formation of Carbocyclic Spiro Compounds. Total Synthesis of (-)-Solavetivone

Jih Ru Hwu*,^{†,‡,§} and John M. Wetzel[†]

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan **30043,** *Republic of china, and Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China*

Received June 5,1991 (Revised Manuscript Received September 25,1991)

A new method involving silicon-promoted **ring** contraction was developed for the synthesis of carbocyclic spiro compounds. In the presence of a Lewis acid, (trimethylsilyl)decalinol 12 and (trimethylsilyl)decalin epoxide 11 underwent ring contraction in a highly stereoselective manner to afford spiro[4.5]dec-6-enes 14 and 19, respectively. The first total synthesis of optically active solavetivone $((-)-1)$ was accomplished in 13 steps by use of this new **type** of reaction **as** the key step. **Utilization** of the silicon-promoted ring contraction eolvea three problems associated with spiro compound synthesis: **(1)** efficient generation of the **quaternary** carbon spiro center, **(2)** full control of the stereoconfiiation of the spiro center during ita formation, and **(3)** stereoepecifc establishment of chiral centers on both rings of the spiro unit.

Introduction

Many carbocyclic spiro compounds possess valuable biological or physical properties. Chemical and pharmaceutical industries use some of these compounds extensively. Whereas the spiro moiety exists *among* alkaloids, steroids, and polycyclic hydrocarbons, the spiro[4.5]decane sesquiterpenes make up the majority of naturally occurring spiro carbocycles.

Several synthetic methods *can* lead to spiro carbo**cycles;14** however, few of them give **high** yields with control of stereochemistry at the spiro center **as** well **as** in both rings. Acid-catalyzed rearrangement involving ring contraction can generate spiro compounds stereoselectively,² but examples of **this** method with high yields are rare. We undertook the development of a new synthetic method that *can* provide good yields of isomerically pure spiro products.

Silicon can direct organic reactions in various ways. $4-6$ Recently, Kuwajima^{7,8} reported a silicon-directed ring enlargement reaction. Herein, we report a novel siliconpromoted ring contraction reaction and ita application **as** the key step in a total synthesis of a spirocyclic natural product, (-)-solvetivone **(l).g**

~~ **(1)** Krapcho, **A. P.** *Synthesis* **1974,383** and references cited **therein. (2)** Krapcho, **A. P.** *Synthesis* **1976,425** and references cited **therein. (3) Marshall, J. A.;** Brady, **St.** F.; Anderson, *B.* H. *Fortschr. Chem.*

^{*}Address correapondenca to this author at Institute of Chemistry, Academia **Sinica.**

[&]quot;The Johns Hopkins University.

^{*}Department of Chemistry, National Tsing Hua University **and** Institute of Chemistry, Academia Sinica.

^{&#}x27;Reeearch fellow of the *Alfred* P. Sloan Foundation **(1986-1990).**

⁽⁴⁾ Colvin, E. W. *Silicon in Organic Synthesis;* Butterworthe; re- *Org. Naturst.* **1974,** *31,* **283** and references cited therein.

printed by Kreiger: Malabar, FL, **1985.**

⁽⁵⁾ Fleming, I. *Chem. Soc. Rev. 1981, 10, 83.*
(6) Negishi, E.-i. *Organometallics in Organic Synthesis*; Wiley: New

⁽⁷⁾ Tanino, K.; Katoh, T.; Kuwajima, I. *Tetrahedron Lett.* **lS88,29,** York, **19B0, Vol. 1,** Chapter **6.**

^{1815.}

⁽⁸⁾ Katoh, T.; Tanino, K.; Kuwajima, I. *Tetrahedron Lett.* **1988,29, 1819.**

 $(-)$ -Solavetivone, a phytoalexin,¹⁰ is a representative of a class of compounds **isolated** from potato tubers infected with **the** blight *fungus Phytophthora infestam* or with the soft-rot bacterium *Erwinia carotovora*.^{9,11-13} (-)-Solavetivone inhibits germination,¹⁴ germ tube¹⁵ and mycelial growth,¹⁶⁻¹⁸ and essential enzymes¹⁸ of *P. infestans*. It also **poseesees** inhibitory activity against the bacteria *Pseudomonas solanacearum* and *Pseudomonas syringae* pv. *ta*baci.¹⁹ Murai et al. showed that (-)-solavetivone is a biosynthetic precursor of several other phytoalexins, $20-24$

- **(11) price,** K. **R.; Howard, B.; Coxon, D.** T. *Physiol.* Plant Pathol. **1976, 9, 189.**
- **(12) Brindle, P. A;** Kuhn, **P.** J.; **Threlfall, D. R.** *Phytochemistry* **1983, 22, 2719.**
	-
- **(13) Lyon, G. D.** *Phytopathol. 2.* **1984,111, 236. (14) Harris,** J. **E.;** Dennis, **C.** *Physiol. Plant Pathol.* **1976, 9, 155. (15) Sato, N.; Yoshizawa, Y.; Miyazaki, H.; Murai, A.** *Nippon Shoku-butsu Byori Cakkaiho* **19&5,51,494 and references** cited **therein.**
- **(16) her,** J.; **Ereek,** T. *Acta Phytopathol. Acad. Sci. Hung.* **1976, 11, 59.**
- **(17)** St&sel, P.; **Hohl,** H. **R.** *Mycopathologia* **1981, 73,153.**
- **(18) Hohl, H. R; 53-1, P.; Hichler, H.** *Ann. Phytopathol.* **1980,12, 353.**
- **(19)** Tanaka, **H.; Uegaki, R.; Fujimori,** T.; **Kato, K.** *Nippon Shoku-butsu Byori Cakkaiho* **1983,49,501.**
- **(20) Murai, A; Sato, 5.; Oeada, A; Katsui, N.; Masamune,** T. *J. Chem. Soc., Chem. Commun.* **1982,32.**
- **(21) Murai, A; Sato, S.; Oeada, A.; Katsui, N.; Maeamune,** T. *Tennen Yuki Kagobutsu Toronkoi Koen Yoshishu, 24th* **1981,521;** *Chem. Abstr.* **1982,96,119085d.**

Figure **1.** Molecular **framework** of **(-)-ll** revealed **by eingle**crystal **X-ray diffraction** analysis.

including oxylubimin, $20-22$ rishitin, $20-22$ and phytuberol.²³

Results

The control of the stereocenters of a carbon in decalins is greatly facilitated by the rigidity of the decalin nucle**us.=** *Ring* contraction *occurring* in a decalin would **allow** the configuration of some chiral centers to be transferred stereospecifically to the product.²⁷ Recognizing this advantage, we accomplished a total synthesis of $(-)$ -solavetivone by **using** a silicon-promoted ring contraction **as** the key step.

Synthesis of the Precursor, Decalinol (+)-12, for Ring Contraction. We converted $(+)$ -dihydrocarvone (2) to $(-)$ -2-carone²⁸ (3, Scheme I) by the procedure of Dauben.²⁹ Then (-)-2-carone (3) was transformed to optically active cross-conjugated trienone **(4-7,** via intermediates **4-6,** according to the elegant method developed by Caine et al.^{30,31}

By reacting trienone $(-)$ -7 with Me₃SiLi,^{32,33} we obtained **(-)4** in 66% yield after purification (Scheme **II).** The **GC** chromatogram of the crude product mixture showed **a** small peak $(t_R 7.39 \text{ min})$ with retention time close to the major peak corresponding to $(-)$ -8 $(t_R \ 6.82 \text{ min})$. The compound with the small peak was tentatively assigned to the epimer of $(-)$ -8, in which all three ring substituents were cis. The ratio of $(-)$ -8 to this epimer, which was not isolated, **was** greater than 191 by GC.

We reacted $(-)$ -8 with 1,2-ethanedithiol and BF_3 **·OEt**₂ in methanol³⁴ to give $(-)$ -9 in 93% yield. Relying on our

- (23) Murai, A.; Yoshizawa, Y.; Miyazaki, H.; Masamune, T.; Sato, S. *Chem. Lett.* **1987**, 1377.
- **(24) Murai, A.; Ycehizawa, Y.; Katsui, N.; Sato,** S.; **Wune,** T. *Chem. Lett.* **1986, 771.**
- (25) Heathcock, C. H.; Graham, S. L.; Pirrung, M. C.; Plavac, F.; White, C. T. In The Total Synthesis of Natural Products; ApSimon, J.,
- **ApSimon,** J., **Ed.; Wiley: New York, 1973;** Vol. **2, pp 282-394. (26) Heathcock, C. H. In** *The Total Synthesis of Natural Products;*
- *try;* **Pergamon: New York, 1983; pp 190-195. (27) Dealongchamps, P.** *Stereoelectronic Effects in* **Organic** *Chemis-*
- **(28) Caine, D.; Gupton, J.** T., **III.** *J. Org. Chem.* **1974,39, 2654. (29) Dauben, W. G.; Shdfer, G. W.; Deviny, E.** J. *J. Am. Chem. SOC.*
- **1970,92,6273. (30) Caine, D.; Chu, C.-Y.; Graham, S. L.** *J.* **Org.** *Chem.* **1980,45,3790.**
- **343. (31) Caine, D.; Deutach, H.; Gupton, J.** T., **III.** *J. Org. Chem.* **1978,43,**
-
- **(32) Still, W. C.** *J. Org. Chem.* **1976,41,3063. (33) Hudrlik, P. F.; Waugh, M. A.; Hudrlik, A. M.** *J. Organomet. Chem.* **1984,271,69.**
- **(34) Hatch, R P.; Shingarpure,** J.; **Weinreb, S. M.** *J.* **Org.** *Chem.* **1978, 43, 4172.**

⁽⁹⁾ Coxon, D. T.; **price, K. R; Howard, B.;** *Oeman,* **S. F.;** Kalan, **E. B.; Zacharius,** €2. **M.** *Tetrahedron Lett.* **1974,2921.**

⁽¹⁰⁾ Afd, **M.; Al-Oriquat, G.** *Heterocycles* **1986,24,2943 and refer ences cited therein.**

⁽²²⁾ Sato, K.; **Iehiguri, Y.; Doke, N.;** Tomiyam+ **K.; Y-,** F.; **Murai. A.: Katsui. N.: Maeamune. T.** *PhvtochemLstn,* **1978. 17. 1901.**

Table I. Reaction Conditions That Provided Spirocyclic Diene $(-)$ -14 from Trimethylsilyl Alcohol $(+)$ -12^a

entry	acid	equiv	temperature, °C/time, min	products, \mathcal{R}^b (%) ^c			
				14	15	16	17
	FeBr.	1.4	$-60/25$	59 (54)	3	22(18)	5
	FeCl ₃	1.0	$-78/75$	28		42	8
3 ^d	SnCl ₄	1.0	$-95/30$	49 (46)		41 (32)	
4 ^d	SnCl ₄	1.0	$-78/25$	44		56	
5 ^e	AICI ₂	1.6	$-78/60$	19	5	30	8
				16		76	8
	$\rm ZnBr_2$	$1.2\,$	rt/60 ^a Methylene chloride was the solvent for all reactions. Except where noted, the concentration of $(+)$ -12 was 0.01 M. ^b GC yield. 'Isolated yield. ^d Concentration of (+)-12 was 0.05 M. \degree Concentration of (+)-12 was 0.03 M.				
6 ^e		Scheme III			Scheme IV		

experience with the reduction of $1,3$ -dithiolanes,³⁵ we used calcium in liquid ammonia with ether **as** cosolvent to convert the thioacetal moiety of $(-)$ -9 to a methylene unit and thus obtained trimethylsilyl diene **(-)-lo** in **75%** yield.

Using m-CPBA, we epoxidized $(-)$ -10 in CHCl₃ at -22 \degree C to give the desired β -4,5-monoepoxide $(-)$ -11 as the only major product in **64%** yield (Scheme 11). In the GC chromatogram of the crude product mixture, a peak (t_R) 8.86 min) with retention time close to that of $(-)$ -11 $(t_R 9.17)$ min) was tentatively assigned to the corresponding α -4,5monoepoxide. The ratio of $(-)$ -11 to the α -4,5-monoepoxide was greater than **351.**

We confirmed our structural assignment of epoxide **(-)-11,** a white crystal, by single-crystal X-ray diffraction analysis.36 Figure **1** shows the molecular framework of **(-)-11,** in which the **angular** methyl group was **trans** to the Me3Si group and cis to the epoxy oxygen.

Lipshutz et al.³⁷ reported that organocuprates R_2 Cu- $(CN)Li₂$ can add to sterically hindered epoxides to give alkyl-substituted alcohols in excellent yields. Thus we treated $(-)$ -11 with 10 equiv of $Me₂Cu(CN)Li₂$ in THF at *60* **OC** (Scheme 11) and obtained tertiary alcohol **(+)-12** in **61%** yield.

Proton NMR homonuclear decoupling and nuclear Overhauser effect (NOE) experiments provided evidence to support our stereochemical assignment of **(+)-12** (see Scheme III). In the homonuclear decoupling experiment, we simultaneously irradiated the terminal methylene

protons at **6 4.69** and **4.70** ppm. We observed peak sharpening of an unresolved multiplet at **6 2.35-2.87** ppm. Conversely, the peaks at δ 4.69 and δ 4.70 ppm were sharpened by irradiation of protons with multiplet at **6** 2.35-2.87 ppm. Thus we assigned the multiplet at δ **2.35-2.87** ppm to the allylic methine proton. In an **NOE** experiment, we irradiated at the frequency of the $CH₃CH$ doublet at **6 1.26** ppm and produced an 18% enhancement of the multiplet at **6 2.35-2.87** ppm. The observed **NOE** can be explained by the stereoconfiguration and conformation of **(+)-12** depicted in Scheme 111, in which the $CH₃CH$ methyl and the allylic methine are nearby.

Silicon-Promoted Ring Contraction of Decalinol **(+)-12.** We optimized the reaction conditions for the silicon-promoted ring contraction of **(+)-12** by using various Lewis acids, solvents, and temperatures. Table I lists the results from the most thoroughly examined reactions. In the presence of 1.4 equiv of FeBr_3 in CH_2Cl_2 at -60 °C, **(+)-12** gave the highest yield **(54%)** of the desired spiro compound **(4-14** (Scheme I11 and entry **1** in Table I).

We **also** isolated three byproducts and assigned them structures **15,16,** and **17.** Spiroalkene **15** was formed **in 3 9%** yield by a C-C double bond migration in the primary product $(-)$ -14 to a thermodynamically more stable position. **Octalin 16** was generated in **18%** yield by dehydration of **(+)-12.** Octalin **17** was produced in *5%* yield by sequential ionization of **(+)-12,** hydride shift, and proton abstraction.

Silicon-Promoted Ring Contraction of Epoxide **(-)-11.** Silicon-promoted ring contraction may occur in substrates with an epoxy group **as** the initiator. In this regard, we considered the unique chemical activity of AlMe3: it *can* react both **as** a Lewis acid and **as** a methyl donor.³⁸⁻⁴¹ Thus this reagent might catalyze the ring

⁽³⁵⁾ Hwu, J. R.; Chua, V.; Schroeder, J. E.; Barrans, R. E., Jr.; Khoudary, K. P.; Wang, N.; Wetzel, J. M. Org. Chem. 1986, 51, 4731. (36) Carried out by Professor Raymond J. Butcher at Howard Univ-

ersity. The details will **be published in the future. (37) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski,** J. **A,; Parker, D.** *J.*

Org. Chem. **1984,49,3928.**

⁽³⁸⁾ Still, W. C.; Ohmizu, H. *J. Org. Chem.* **1981,46, 5242. (39) Kuran, W.; Pasynkiewicz, S.; Serzyko,** J. *J. Organomet. Chem.*

^{1974, 73, 187.}

⁽⁴⁰⁾ Namy, J. **L.; Henry-Baech, E.; hn, P.** *Bull. Soc. Chim. Fr.* **1970, 2249.**

⁽⁴¹⁾ Lundeen, A. J.; Oehlachlager, A. C. *J. Organomet. Chem.* **1970, 25,337.**

Total Synthesis of $(-)$ -Solavetivone

contraction of $(-)$ -11 to spirodienol 19 via 18 (Scheme IV). Alternatively, AlMe_s might open the epoxide ring of $(-)$ -11 by S_N2 to give methyl-substituted tertiary alcohol 12 and then to bring about silicon-promoted ring contraction in situ to provide 14.

Alkylation of epoxides with trialkylaluminums generally occurs at the more substituted carbon atom.^{39,40} Nevertheless, normal S_{N2} at the less hindered carbon atom can compete favorably when the ratio of triakylaluminum to epoxide is unity or below.⁴¹ The epoxy group of $(-)$ -11 is trisubstituted and in a crowded environment. Methylation at the tertiary carbon of **this** group might therefore be slow enough to allow substitution at the lees hindered secondary carbon to predominate. Consequently, we treated epoxide $(-)$ -11 with 10 equiv of AlMe₃ in hexanes at room temperature (Scheme IV). After **4** days, spiro alcohol 19 was obtained in **47%** yield.

Completion of the First Total Synthesis of (-)-Solavetivone. We required a method that can efficiently convert $(-)$ -14 to the final target $(-)$ -solavetivone (1) by allylic oxidation of the $C=C\subset H_2$ unit. We were not able to accomplish this transformation with various established reagents.

Sharpless and Akashi proposed that the reagent CrO₂- $(OCMe₃)₂$ in the presence of pyridine might perform allylic oxidations,'2 but did not provide any working examples. On the basis of the results of Salmond et al. with related reagents,⁴³ we utilized an excess of $CrO₂(OCMe₃)₂$ in the presence of 3.5-dimethylpyrazole (DMP) for the oxidation of $(-)$ -14. After purification, an oil was obtained in 71% yield, of which the ¹H NMR and broadband decoupled ¹³C NMR spectra were identical with those of authentic (-)-solavetivone (1). High-resolution **mam** and IR spectral data **also** support the assignment of this product **as** (-) solavetivone. For the specific rotation, we obtained α ²⁵_D -135 ° (c 0.2326 $g/100$ mL, EtOH) for our product. This rotation had a greater absolute value than that $(lit.^{9} [\alpha]^{25}$ _D -119 ^o (EtOH)) reported by Coxon et al.

Discussion

Four synthetic routes have been developed to racemic solavetivone,⁴⁴⁻⁴⁷ but none for the total synthesis of optically active $(-)$ -solavetivone (1) . A synthetic entry to $(-)$ -1 would provide the basis for the preparation of its isotopically labeled, homochiral analogues for biosynthetic studies.⁴⁸

We found that 1,4addition of Me3SiLi to **7** occurred at the less substituted C-C double bond (i.e., $C_1=C_2$) of the cross-conjugated system (Scheme II). Also, Me₃Si⁻ preferentially added from the a-face of **7.** Our findings are consistent with the results of axial 1,4-addition of Me₃SiLi to 2-cyclohexenones. 32 In addition, the stereochemical outcome from our reaction is similar to that obtained by Marshall and Warne.⁴⁹ They found that a methyl group of Me₂CuLi adds preferentially from the direction trans to an angular methyl group in dienone substrates.

(49) Marshall, J. A.; Warne, T. M., Jr. J. Org. *Chem.* **1971,36, 178.**

Epoxidation of 10 with m-CPBA took place stereo- and regioseledvely to **afford** 11 **as** the major product, in which the epoxy group possessed β configuration. The trisubstituted C-C double bond in 10 is more electron-rich than the disubstituted C-C double bond and therefore reacted faster with the peracid.⁵⁰ Furthermore, the bulky Me₃Si group blocked the α face of the trisubstituted C-C double bond.⁵¹ In this regard, the Me₃Si group acts as a "bulky" proton."52

Design of *Ring* **Contractions.** For the ring contraction shown in Scheme V, we believed that the yield could be improved if the starting fused-ring compound (20) possessed a special functional group. This group, residing in either C_1 or C_{11} of 20, must be able to stabilize an adjacent positive charge *(cf.* 21). Moreover, if this functional group eliminated much faster than a proton from 21, a sole spirocyclic alkene would be formed. The location of the C-C double bond in the spiro product would be determined by the position of the cation-stabilizing functional group in **20.** Loss of this functional group from the C-1 position in 21 would afford the endocyclic alkene 22. Alternatively, loss of the functional group from the C-11 position in 21 would provide a regioisomer of 22, in which the C-C double bond is exocyclic.

Based upon Fleming's results, $53-56$ we considered the Me3Si group appropriate and, thus, placed it at the C-1 position. To our knowledge, it is unprecedented to use silicon to promote ring contraction for the formation of spiro compounds.

We **also** studied the silicon-promoted ring contraction using trimethylsilyl epoxide 11 **as** the substrate (Scheme IV). The epoxy group in 11 can afford a hydroxyl group upon acid-catalyzed ring opening (i.e., $11 \rightarrow 18$). This hydroxyl functionality allows further elaboration of the resultant spiro product 19.

We obtained good yields of spiro products from both $(-)-11$ and $(+)-12$. These results indicate that trans coplanar alignment of the C-SiMe₃ bond and the migrating C-C bond is not a requirement for silicon-promoted ring contraction. Our findings are also consistent with those reported recently by Lambert et al.:⁵⁷ an Me₃Si group can

(52) Hwu, J. R.; Wetzel, J. M. *J. Org. Chem.* **1986,60, 3946.**

- (53) Davidson, A. H.; Fleming, I.; Grayson, J. I.; Pearce, A.; Snowden,
R. L.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1977, 550.
(54) Fleming, I.; Paterson, I.; Pearce, A. J. Chem. Soc., Perkin Trans. **1 1981,256.**
	- **(55)** Fleming, I.; Patal, S. *Tetrahedron Lett.* **1981,22, 2321.**

245. See alao: Roush, W. R.; D'Ambra, T. *E. J. Am. Chem. SOC.* **1989, 105,1058.** Roush, W. R.; D'Ambra, T. E. *J. Org. Chem.* **1981,46,5045.**

Asaoka, M.; Takei, H. *Tetrahedron Lett.* **1987,28,6343. (57)** Lambert, J. B.; **Wang,** G.-t.; Fml, R. B.; Termurn, D. **H.** *J. Am. Chem. SOC.* **1987,109,7838.**

(58) Hwu, J. R.; Robl, J. **A;** Khoudary, K. P. J. *Chromutogr. Sci.* **1987, 25,501.**

⁽⁴²⁾ Sharpless, K. B.; Akaehi, **K.** *J. Am. Chem. SOC.* **1976,97, 5927. (43)** Salmond, W. G.; **Barta,** M. A.; Havens, J. L. J. *Org. Chem.* **1978,** *43,* **2057.**

⁽⁴⁴⁾ Murai, **A.;** Sato, S.; Masamune, T. Bull. *Chem. SOC. Jpn.* **1984, 57, 2282.**

⁽⁴⁵⁾ Iwata, C.; Fusaka, T.; Fujiwara, T.; Tomita, K.; Yamada, M. J. *Chem. SOC., Chem. Commun.* **1981,463.**

⁽⁴⁶⁾ Murai, A.; **Sato, 5.;** Masamune, T. Bull. *Chem.* **SOC.** *Jpn.* **1984, (47)** Yamada, K.; Goto, S.; **Nagaee,** H.; Christensen, A. T. J. *Chem.* **57, 2276.**

SOC., Chem. Commun. **1977, 554.**

⁽⁴⁸⁾ For examples of the use of isotopically labeled $(+)$ -solavetivone for biosynthetic studies, *see* refs **20, 23,** and **24.**

⁽⁵⁰⁾ Knöll, W.; Tamm, C. *Helv. Chim. Acta* 1975, 58, 1162.

⁽⁵¹⁾ Chavdarian, C. G.; Heathcock, C. **H.** *Synth. Commun.* **1976,6, 277.**

⁽⁵⁶⁾ Fleming, I.; Michael, J. P. *J. Chem.* **SOC.,** *Chem. Commun.* **1978,**

encourage the formation of a positive charge at a β -carbon even when the $C-SiMe₃$ bond is not trans coplanar to the $C-L$ bond $(L =$ leaving group).

In the AlMe₃-induced ring contraction of $(-)$ -11, we obtained only one spirocyclic product (i.e., **19).** The absence of other spiroalkenes in this reaction suggests that loss of the Me₃Si group proceeds much more rapidly than loss of a proton from carbocation **18** (Scheme **IV).** Our result corroborates those reported by Fleming, Warren, and their co-workers $53-56$ on fundamental silicon-promoted carbocation rearrangements.

Significance of the New Synthetic Method. Murai, Sato, and Masamune accomplished the shortest total synthesis of racemic solavetivone.⁴⁴ which involves 10 steps and provides (\pm) -solavetivone in 15% overall vield. However, it does not allow control of the stereoconfiguration at C_{10} of the spirovetivane skeleton. Thus a separation of four diastereomers **is** necessary at an intermediate stage. The other published syntheses of (\pm) -solavetivone, developed by Iwata,⁴⁵ Murai,⁴⁶ Yamada⁴⁷ and their coworkers, **also** require the separation of diastereomeric mixtures.

We completed the first total synthesis of $(-)$ -solavetivone. *Our* route includes **13** steps and provides the target compound in 1.4% overall yield from (+)-dihydrocarvone. Our synthetic strategy affords a high degree of stereocontrol in the formation of each chiral center of $(-)$ -solavetivone.

As a synthetic target, $(-)$ -solavetivone epitomizes carbocyclic spiro compounds. (-)-Solavetivone possesses a chiral center on each ring in addition to the chiral spiro carbon. Our highly stereoselective total synthesis of (-)-solavetivone demonstrates that the silicon-promoted ring contraction method solves the problems associated with spiro compound synthesis. These problems include: (1) generation of the quaternary spiro center, **(2)** control of the stereoconfiguration of the spiro carbon, and (3) establishment of chiral centers on both rings.

Conclusions

A new method involving silicon-promoted ring contraction was developed for the synthesis of carbocyclic spiro compounds. This method allowed the stereospecific generation of a spiro[4.5]dec-6-ene in good yield from a (trimethylsilyl)decalinol or (trimethylsilyl)decalin epoxide. The first total synthesis of (-)-solavetivone **(1)** was achieved by application of the silicon-promoted ring contraction **as** the key step.

In the total synthesis of $(-)$ -solavetivone, the Me₃Si group serves four functions. (1) It afforded stereoselectivity to the epoxidation of trimethylsilyl diene **(-)-lo** by blocking the α face. (2) The Me₃Si group promoted the acid-catalyzed ring contraction of tertiary alcohol **(+)-12** by stabilizing intermediate carbocation 13. **(3)** The Me₃Si group prevented scrambling of the spiro carbon stereoconfiguration by eliminating rapidly from **13.** (4) The Me3Si group determined the position of the newly formed C-C double bond in the ring-contracted product **(-)-14.**

Experimental Section

(-)-(6S,SR **)-9-Isopropenyl-6-methylbicyclo[4.4.0]deca-**1,4-dien-3-one **(7).** Method 1. The procedure of Caine et al.³⁰ was followed. A mixture of 5 **(1.13 g, 4.69 mmol, 1.0 equiv)** and NaOAc **(1.15 g, 14.1** mmol, **3.0** equiv) in AcOH **(16 mL)** was **stirred** rapidly and heated at 100 °C for 3 h. The mixture was cooled to room temperature and poured into *20* **mL** of cold water. **The** aqueous solution was worked up to afford **(+)-6 as** a brown **oil** $\text{in } 100\% \text{ yield } (0.955 \text{ g}, 4.67 \text{ mmol}).$

"his brown **oil was** not purified, but was **reacted** directly with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (98% pure, 1.41 **g**, 6.10 mmol, 1.3 equiv) in anhydrous p-dioxane (120 mL) at reflux with stirring for **44** h. The solution was worked up to give a residue, which was purified by MPLC $(1.5 \text{ cm} \times 30 \text{ cm} \text{ column}, 18\%)$ EtOAc in hexanes as eluant) to afford $(-)$ -7 $(0.456 g, 2.25 mmol,$ **48%** overall yield from **5) as** a yellow **oil.** Compound **(+)-e (0.194 g, 0.950 "01, 20%** yield from **6)** was **also isolated as** a yellow **Oil.**

 $(c \ 1.0576, CH_2Cl_2);$ ¹H NMR $(CDCl_3, 80 \ MHz)$ δ 1.24 $(s, 3 \ H, CH_3)$, **1.3-2.8** (m, **11 H**, $5 \text{ CH}_2 + 1 \text{ CH}$), **1.76** (t, $J = 1.1 \text{ Hz}$, 3 H) CH₃C=C), 4.76 (br **s**, 2 H, C=CH₂), 5.75 (br **s**, 1 H, C=CHC=O); IR (neat) **3075** (w, --CHI, **3020** (w, =CHI, **1668** *(8,* conjugated *C*=0), 1642 (s, C=C), 1616 (s, conjugated C=C), 892 (s, =CH₂) cm-l; exact mase calcd for C14Hzo0 **204.1514,** found **204.1517.** For (+)-6: TLC R_f 0.58 (40% EtOAc in hexanes); $[\alpha]_{D}^{\infty}$ +95.0°

For $(-)$ -7: TLC R_t 0.49 (40% EtOAc in hexanes); $[\alpha]^{25}$ _D-172° (c **0.6439,** CHC13); **lk** *NMR* (CDC13, *80* **MHz)** *b* **0.67-2.52** (m, **7 CH₃C--C**), **4.79** (br **s**, 2 **H**, C--CH₂), **6.12** (d, $J = 1.8$ Hz, 1 H, CH₃C--C), **4.79** (br **s**, 2 H, C--CH₂), **6.12** (d, $J = 1.8$ Hz, 1 H, $(C-H_3C-C)$, **4.79** (br s, 2 **H**, $C-C-H_2$), **6.12** (d, $J = 1.8$ Hz, 1 H, $C-CH$), **6.20** (dd, $J = 9.7$, 1.8 Hz, 1 H, HC–CHC–O), 6.78 (d, $J = 9.7$ Hz, 1 H, HC=CC=0); IR (neat) 3072 (w, =CH), 3032 $(w, =CH)$, 1660 (s, cross-conjugated C=0), 1626 (m, conjugated C=0, 1607 (m, conjugated C=0, 890 (s, $=CH_2$) cm⁻¹; exact mass calcd for C1,H1*O **202.1358,** found **202.1358.** H , $3 \text{ CH}_2 + 1 \text{ CH}$, 1.27 (s, 3 H , CH_3), 1.78 (t, $J = 1.0 \text{ Hz}$, 3 H ,

Method **2.** After purification by MPLC, **(+)-6 (3.35 g, 16.4** mmol, 1.0 equiv) was dissolved in anhydrous p-dioxane (410 mL). 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone $(98\%$ pure, 4.93 g, 21.3 mmol, **1.3** equiv) **was** added, and **the mixture was** heated at **reflux** for **44** h. The solution was worked up, and the resultant residue was chromatographed **on silica** gel **(5.0** *cm* **X 30** *cm* column, **25%** EtOAc in hexanes **as** eluant) to afford **(-1-7** in **74%** yield **(2.46 g, 12.2** "01) **as** an **oil.**

(-)-(59,6R **,9R)-9-Isopropenyl-6-methyl-5-(trimethylsilyl)bicyclo[4.4.0]dec-l-en-3-one (8).** A solution of hexamethyldiailane **(95%** pure, *804* rL, **3.7** mmol, **2.5** equiv) in hexamethylphosphoramide (1.6 mL) was cooled to -78 °C under **argon,** whereupon the mixture solidified. Low-halide MeLi **(1.3** M in ether, **2.3 mL, 3.0 mmol,2.0** equiv) and THF **(8.0 mL)** were added slowly **onto** the frozen mixture, which was then warmed to 0 °C for 5 min. The resultant orange-red solution was cooled to **-78** "C. A solution of trienone **(-1-7 (302** mg, **1.49** mol, **1.0** equiv) in THF **(1.5 mL)** was **injected** slowly **into** the reaction flask. The resultant **dark green** solution was stirred at **-78** "C for **1** h. Water **(5 mL)** was added into the reaction flask, and the **mixture** was **poured** into ether. The ether solution was washed with water and brine, dried over MgSO₄(s), filtered, and concentrated. Purification of the residue by MPLC **(1.5** cm **X 30** cm column, **5%** WAC in hexanes **as** eluant) provided **(-1-8** in 66% yield **(273** mg, 0.988 mmol) as a yellow oil, which was $>95\%$ one component by GC. For $(-)$ -8: TLC R_f 0.46 (20% EtOAc in hexanes); GC t_R **6.82 min** (column temperature program: initial temperature **170** "C, duration **3.00 min,** increment rate **10** "C/miq final temper*by* GC. For $(-)$ -8: TLC R_f 0.46 (20% EtOAc in hexanes); GC t_R 6.82 min (column temperature program: initial temperature 170 °C, duration 3.00 min; increment rate 10 °C/min; final temperature 210 °C); $[\alpha]_{2b}^{25}$ – **4.75** (bra, **2** H, C=CH2), **5.78** (br *8,* **1** H, WHO); IR (neat) **3076 (w, --CH), 3015 (w, --CH), 1671 (s, conjugated C--O), 1642

(m, --CH₂), 1617 (m, conjugated C--C), 1252 (s, SiMe₃), 891 (s,** $(m,$ - CH₂), 1617 (m, conjugated C-C), 1252 (s, SiMe₃), 891 (s, -CH₂), 847 (s, SiMe₃) cm⁻¹; exact mass calcd for C₁₇H₂₈OSi **276.1909,** found **276.1909. ²**CH), **1.30** *(8,* **3** H, CH3), **1.75** (t, J **1.0** *Hz,* **3** H, CH3W),

(-)-(5S,6R,9R)-9-Isopropenyl-6-methyl-5-(trimethyl**silyl)bicyclo[4.4.0]dec-L-en-3-one** %Ethylene **Thioacetal (9).** Dienone (-)-8 (1.54 g, 5.57 mmol, 1.0 equiv) and 1,2-ethanedithiol (96% pure, **536** *pL,* **6.13** mmol, **1.1** equiv) were dissolved in **MeOH (40 mL)** in a **flask** equipped with a KOH *drying* tube. Boron trifluoride etherate $(754 \mu L, 870 \text{ mg}, 6.13 \text{ mmol}, 1.1 \text{ equiv})$ was added dropwise into the reaction flask, and the mixture was stirred at room temperature for **3** h. The reaction was quenched by addition of saturated aqueous NaHCO% The mixture was **con**centrated, and ether was added to the residue. The ether solution was washed with saturated aqueous NaHCO₃ and brine, dried over *MgSO,(s),* filtered, and concentrated. The residual cloudy

⁽⁵⁹⁾ **Stoeeel, A.; Stothers, J. B.; Ward, E. W. B. Can.** *J. Chem.* **1978,** *56, 645.*

yellow oil **(1.96** g) was chromatographed on **silica** gel **(19 mm x 95 mm** column) with **1%** EtOAc in hexanes **as** eluant to provide $(-)$ -9 in 93% yield $(1.84 \text{ g}, 5.22 \text{ mmol})$ as a colorless oil: TLC R_t 0.58 (5% EtOAc in hexanes); GC t_R 7.05 min (column temperature *MHz)* **6 0.10 (s,9** H, Si(CH3)3), **1.14 (e, 3** H, CHa), **1.15-2.35** (m, $(m, 4 H, SCH₂CH₂S), 4.70$ (br *s*, 2 H, C–CH₂), 5.66 (br *s*, 1 H, HC-C); **IR** (CCl,) **3070** (w, =CH), **1640** (m, C-C), **1252** *(8,* **SiMe₃**), **890** (s, = $\overline{CH_2}$), **840** (s, SiMe₃) cm^{-1} ; exact mass calcd for C₁₉H₃₂S₂Si 352.1715, found 352.1719. 220 °C); $[\alpha]^{25}$ _D -155° (c 0.3208, CH₂Cl₂); ¹H NMR (CDCl₃, 80 10 H , $4 \text{ CH}_2 + 2 \text{ CH}$), $1.72 \text{ (t, } J = 1.0 \text{ Hz}, 3 \text{ H}$, $\text{CH}_3C = C$), $3.22 - 3.55$

(-)-(5S,6R **,9R)-9-Isopropenyl-6-methyl-S-(trimethyl-** \textbf{silyl})bicyclo[4.4.0]dec-1-ene (10). Calcium metal (99.5% pure, **1.04** g, **25.8** mmol, **5.0** equiv) **was** dissolved in liquid **ammonia (130 mL)** at **-78** OC under an **argon** atmosphere in a **threenecked** tla& equipped with a *dry* ice-acetone-cooled Dewar condenser. **To** this blue solution was added ether **(48 mL)** and a solution of ethylene thioacetal $(-)$ -9 $(1.82 \text{ g}, 5.16 \text{ mmol}, 1.0 \text{ equiv})$ in ether **(4.0 mL).** The **cooling** bath was removed, and the deep blue solution was kept at reflux for 1.8 h. Solid NH₄Cl was added cautiously to the reaction flask, followed by ether *(50* **mL),** and the ammonia was allowed to evaporate overnight. Saturated aqueous NH₄Cl was added to the residue, and the aqueous phase **WBB** extracted with three portions of ether. The combined ether solutions were washed with saturated aqueous NH4Cl, **10%** aqueous NaOH, and brine, dried over **MgS04(s),** filtered through Celite, and concentrated. The residue was purified by chromatography on **silica** gel **(19 mm X 95** mm column) with hexanes **as** eluant to afford **(-)-lo as** a colorless oil, which was 90% one component by **GC (1.13** g, **3.87** mol, **75%** yield). Two unidentified impurities, which have the same R_f as $(-)$ -10 on TLC (hexanes **as** eluant) were inseparable from **(-)-lo** by chromatography. For $(-)$ -10: TLC R_f 0.51 (hexanes); GC t_R 3.83 min (column temperature program: **initial** temperature **170** "C, duration **3.00** min; increment rate 10 $^{\circ}$ C/min; final temperature 210 $^{\circ}$ C); $[\alpha]$ ²⁶_D **-94" (c 0.1425,** CH2Cla (impure sample); 'H *NMR* (CDCl,, *80* **MHz**) δ 0.07 (s, 9 H, Si(CH₃)₃), 0.68–2.34 (m, 12 H, 5 CH₂ + 2 (br s, 2 H, C==CH₂), 5.42 (m, 1 H, HC==C); IR (neat) 3070 (w, ==CH), 1644 (m, C==C), 1253 (s, SiMe₃), 893 (s, ==CH₂), 840 (s, SiMe₃), 760 (m, SiMe₃) cm⁻¹; exact mass calcd for $C_{17}H_{30}Si$ **262.2117,** found **262.2118.** CH), 1.15 (s, 3 H, CH₃), 1.73 (t, $J = 1.1$ Hz, 3 H, CH₃C—C), 4.70

 $(-)$ -($1R$, $2S$, $5S$, $6R$, $8R$)-5, 6 -Epoxy-8-isopropenyl-1**methyl-2-(trimethylailyl)bicyclo[4.4.0]decane (11).** A solution of m-chloroperoxybenzoic acid (80–85% pure, 890 mg, \sim 4.2 mmol, 1.0 equiv) in CHCl₃ (20 mL) was added dropwise to a solution of **(-1-10 (1.08** g, **4.13** "01, **1.0** equiv) in CHC13 **(5.0 mL)** at **-22** "C (CCl,/dry ice bath). The resultant white slurry was stirred at the same temperature for **3.5** h. Aqueous NaOH **(10%)** and ether were added, and the mixture was warmed to room temperature. The organic layer was washed with 5% aqueous $Na₂CO₃$ and brine, dried over $MgSO_4(s)$, and filtered. Removal of the solvents afforded **1.18** g of off-white crystalline solid. Gas chromatographic analysis of the crude product indicated that $(-)$ -11 was the major component $(t_R 9.17 \text{ min}, 75\%$, column temperature **160** "C). A **peak** with retention time close to that of **(-)-11** was tentatively assigned to the epoxy diastereomer, **(1R,2S,5R,6S,8R)-5,6-epoxy-8-isopropenyl-l-methyl-2-(tri**methylsilyl)bicyclo[4.4.0]decane $(t_R 8.86 \text{ min}, 2.1\%)$. The ratio of **(-)-11** to the epoxy diastereomer was **>351.** Purification by MPLC **(1.5** cm **X 45** cm column) with **1%** EtOAc in hexanes **as** eluant provided **(-1-11** in **64%** yield **(735 mg, 2.64** mol) **as** a white crystalline solid: mp $76.5-77.0$ °C; TLC R_f 0.33 (5% EtOAc in hexanes); $[\alpha]^{25}$ _D -56.2° (c 0.8328, CH₂Cl₂); ¹H NMR (CDCl₃, 80 **MHz**) δ 0.02 (s, 9 H, Si(CH₃)₃), 0.60–2.19 (m, 12 H, 5 CH₂ + 2 (br d, $J = 5.0$ Hz, 1 H, HCO), 4.70 (br s, 2 H, C=CH₂); IR (CHCl₃) **3070** (w, +H), **1640** (m, C-C), **1248-1205** *(8,* SiMes + epoxide), **938** (m, epoxide), 892 (s, = CH₂), 835 (s, SiMe₃) cm^{-I}; exact mass calcd for C₁₇H₃₀OSi 278.2066, found 278.2072. calcd for C₁₇H₃₀OSi 278.2066, found 278.2072.
Ring Contraction of (-)-(1R,2S,5S,6R,8R)-5,6-Epoxy-8-CHI, **1.16** *(8,* 3 H, CHJ, **1.72** *(t,* **J** = **1.1** *Hz,* **3** H, CH3c-C), **2.98**

isopropenyl-1-methyl-2-(trimethylsilyl)bicyclo[4.4.0]decane **(11).** Trimethylaluminum **(2.0** M solution in hexanes, **381** pL, **0.761** mmol, **1.0** equiv) was added in one portion to neat epoxide **(-1-11 (21.2 mg, 0.0761 mmo1,l.O** equiv) at **-5** "C under **Ar.** The mixture was warmed to room temperature and stirred for **4 days.**

Hexanes (2 mL) was then injected into the reaction flask, and cautiously to the **mixture,** which was then poured into hexanes. The organic layer was washed with **3** M aqueous KOH and brine, dried **over MgS04(s), filtered,** and concentrated to give a colorlea oil (16.5 mg). This colorless oil was purified by chromatography on **silica** gel **(1.0** cm **X 23.0 cm** column, **5%** ether in hexanes **as** eluant) to **afford 19** in **47%** yield **(7.5 mg,** 0.036 "01) **as** a white solid. A second product was isolated in 24% yield **(5.3 mg, 0.018** mmol) as a colorless oil, but was not identifiable. the mixture was cooled to -5 °C. Aqueous KOH (3 M) was added

For 19: mp $43.0-45.0$ °C; TLC $R_f 0.24$ (20% ether in hexanes); 150 °C, duration 5.00 min, increment rate 10 °C/min; final temperature **170** "C); 'H **NMR** (CDCla, *80 MHz)* **6 0.66-2.80 (m, 11** H , $5 \text{ CH}_2 + 1 \text{ CH}$, $1.73 \text{ (m, 6 H, 2 CH}_3C=0)$, $3.63 \text{ (m, 1 H, HCO)}$, **4.72 (br s, 2 H, C=CH₂), 5.31 (m, 1 H, HC=C); ¹³C NMR (CDCl₃, 101** MHz) **6 19.665** (q), **21.376** (q), **22.960** (t), **27.598** (t), **32.425** C1J; **IR** (melt) **3640-3120** (m, OH), **3076** (w, NH), **1642** (m, W), **1048** (m, CO), *888* (m, =CHI), **801** (w) *cm-';* exact **maas** calcd for C₁₄H₂₂O 206.1671, found 206.1672. GC t_R **4.30 min** (column temperature program: initial temperature (t), **35.725** (t), **36.810** (t), **47.478** (d, Ca, **50.620** (8, Cb), **74.239** (d, C_{10} , **108.199** (t, C_{12}), **120.969** (d, C_7), **138.758** (s, C_6), **148.329** (s,

(+)-(1*R*,2S,5R,6S,8R)-8-Isopropenyl-1,5-dimethyl-2-(trimethylsilyl)bicyclo[4.4.0]decan-6-ol (12). A solution of MeLi **(1.3** M in ether, **8.20 mL, 10.7** "01, **19.5** equiv) was added dropwise to a suspension of CuCN **(491 mg, 5.48** mmol, **10.0** equiv) in THF (5.5 mL) at -78 °C under argon. The mixture was warmed to room temperature, and the resultant tan solution was stirred for **5 min.** This solution was cooled to **-78** "C, and a solution of epoxide **(4-11 (152 mg, 0.547 mmo1,l.O** equiv) in THF **(1.4 mL)** was added dropwise into the reaction flask. The mixture was heated at $55-60$ °C for 144 h. The excess $(CH_3)_2Cu(CN)Li_2$ was destroyed cautiously at room temperature with a buffer solution made from one volume of concentrated $\rm NH_4OH$ and nine volumes of saturated aqueous NH₄Cl. The mixture was poured into ether, and the organic layer was washed with fresh buffer solution and brine, dried over **anhydrous MgS04(s),** filtered, and concentrated. The residue was purified by chromatotron **(l-mm** plate, **5%** EtOAc in hexanea **as** eluant) to afford **(+)-12** in **61%** yield **(98.1** mg, **0.333** "01) **as** a colorless **oil:** TLC *R,* **0.34 (10%** EtOAc **in** hexanes); GC t_R 6.71 min (column temperature program: initial temperature **170** "C, duration **3.00** miq increment rate **10** "C/min; final temperature 210 °C); $[\alpha]^{25}$ _D +36.5° (c 0.8283, CHCl₃); ¹H **NMR** (CDCI₃, 400 **MHz**) δ 0.05 (s, 9 H, Si(CH₃)₃), 1.06 (m, 1 H, SiCH), **1.07** (s, 3 H, CH₃), **1.26** (d, $J = 7.6$ Hz, 3 H, CH₃CH), **1.33** *(8,* **1** H, OH), **1.36-1.98** (m, **11** H, **5** CH2 + **1** CH), **1.73** (br **s,3** H, CH3C-C), **2.35-2.87** (m, **1** H, HCC=C), **4.69** (br *8,* **1** H, HC-C), **4.70** (br *8,* **1** H, HC-C); 13C NMR (CDCl,, **101 MHz) 6 0.749 (q,** SiCJ, **19.245** (t), **20.428** *(Q),* **20.678** *(Q),* **25.737** (t), **28.059 41.898** (d), **42.626** (d), **75.326 (e,** CO), **108.365** (t, C==CHa, **149.722** *(8,* WHa; **IR** (neat), **3645-3255** (m, OH), *3080* (m, =CHI, **1643** (m, W), **¹²⁵³***(8,* SiMe3), **1071** (m, CO), **893** *(8,* =CH2), *838* **(e,** SiMe_3) cm⁻¹; exact mass calcd for $\text{C}_{18}\text{H}_{34}\text{OS}$ 294.2379, found **294.2379.** (91, **32.631** (t), **33.844** (t), **35.355** (d), **41.273** *(8,* C(C)4), **41.388** (t),

(-)-(*2R ,BS* **,10R)-2-Isopropenyl-6,lO-dimet** hylepiro[**4.51 dec-6-0110 (14).** A solution of trimethylsilyl alcohol **(+)-12 (33.9** to a suspension of anhydrous FeBr₃ (47.2 mg, 0.160 mmol, 1.4 equiv) in CHzC12 **(10.2 mL)** at **-60** "C. After the mixture was stirred for 22 min at the same temperature, pyridine $(78 \mu L, 76 \mu L)$ **mg,** 0.96 mol, **8.3** equiv) was injected, and **stirring** was continued for **15** min. The mixture was warmed to room temperature and filtered through basic alumina **(Woelm,** activity grade I, **1** *cm* **^X 6** cm column, CH2C12 **as** eluant). By GC analysis of the filtrate, **(4-14** was found **to** be the major product **(59%).** The byproducts that were detected included **15 (3%), 16 (22%),** and **17 (5%). The** solvents were removed by distillation through a 3-cm vigreux column. Purification of the reaidue by chromatotmn **(l-mm** plate, silica gel **containing 4%** &NO3 on **ailica gel, 1%** EtOAc **in** pentane **as** eluant) and removal of solvents under **reduced** pressure at **-20** OC afforded **(-)-14** in **54%** yield **(12.8** mg, **0.0626** "01) and **16** in **18%** yield **(5.6** mg, **0.020** mmol) **as** colorless oils. mg , 0.115 mmol, 1.0 equiv) in CH₂Cl₂ (1.3 mL) was added dropwise

For $(-)$ -14: TLC \hat{R}_f 0.60 (hexanes); GC t_R 5.77 min (column temperature program: initial temperature **130** "C, duration **8.00** min; increment rate 10 $^{\circ}$ C/min; final temperature 160 $^{\circ}$ C); $[\alpha]$ ²⁵_D

 -87.8 ° (c 0.3928, CH₂Cl₂); ¹H NMR (CDCl₃, 80 MHz) δ 0.90 (d, $J = 6.6$ Hz, 3 H, CH₃CH), 1.10-2.79 (m, 12 H, 5 CH₂ + 2 CH). 1.68 (br s, 3 H, CH₃C=CH), 1.74 (br s, 3 H, CH₃C=CH₂), 4.70 (br *s*, 2 H, C=CH₂), 5.28 (m, HC=C); ¹³C **NMR** (CD₂Cl₂, 101) MHz) *6* 14.948 (9, Cis), 20.236 (q), 21.275 (q),22.352 (t), 27.458 (t), 33.185 (t), 34.365 (t), 38.146 (d, C₁₀), 44.190 (t), 47.155 (d, C₂), **48.856 (s, C₅), 108.193 (t, C₁₂), 121.148 (d, C₇), 139.565 (s, C₆),** 149.048 (s, C₁₁); IR (neat) 3080 (w, = CH), 3035 (w, = CH), 1646 (w, C=C), 891 (m, $=$ CH₂) cm⁻¹; exact mass calcd for C₁₅H₂₄ 204.1878, found 204.1878.

For 15: TLC R_f 0.60 (hexanes); GC t_R 6.29 min (column temperature program: initial temperature 130 °C, duration 8.00 min; increment rate 10 °C/min; final temperature 160 °C); ¹H NMR (CDC13, 400 *MHz)* 6 0.87 (d, J ⁼6.8 *Hz,* 3 H, CH3CH), 1.20-1.76 $(m, 5 H)$, 1.61 $(m, 6 H, (CH₃)₂C= C)$, 1.63 $(m, 3 H, CH₃C= CH)$, 1.82-2.36 (m, 6 H, 3 CH₂C=C), 5.36 (m, 1 H, HC=C); exact mass calcd for $C_{15}H_{24}$ 204.1878, found 204.1879.

For 16: TLC R_f 0.60 (hexanes); GC t_R 13.27 min (column temperature program: initial temperature 130 'C, duration 8.00 min; increment rate 10 °C/min; final temperature 160 °C); ¹H **NMR** (CDCl₃, 80 MHz) δ 0.06 (s, 9 H, Si(CH₃)₃), 0.62-2.63 (m, 12 H, 5 CH₂ + 2 CH), 1.13 (s, 3 H, CH₃), 1.62 (br s, 3 H, CH₃C=C), 1.75 (t, $J = 1.0$ Hz, 3 H, $CH_3C=CH_2$), 4.72 (br s, 2 H, $C=CH_2$); IR (neat) 3070 (w, **=CH),** 1643 (m, C=C), 1252 *(8,* SiMe3), 890 $(s, =CH₂)$, 838 (s, SiMe_3) cm⁻¹; exact mass calcd for $C_{18}H_{32}Si$ 276.2273, found 276.2277.

For 17: TLC R_f 0.60 (hexanes); GC t_R 14.98 min (column temperature program: initial temperature 130 °C, duration 8.00 min; increment rate 10 °C/min; final temperature 160 °C); ¹H **NMR** (CDC13, 400 **MHz)** *6* 0.05 (8, 9 H, Si(CH3)s), 0.85 (m, 1 H, HCSi), 1.14 (s, 3 H, CH₃), 1.36-1.82 (m, 6 H, 3 CH₂), 1.65 (m, 3 H, CH₃C=CH), 1.72 (br s, 3 H, CH₃C=CH₂), 1.89-2.08 (m, 4 H, 1 CH₂C - C and 2 HCC--C), 4.67 (br s, 2 H, C--CH₂), 5.54 (br s, 1 H, HC--C); IR (CCL) 3060 (w, -C-H), 1640 (w, C--C), 1250 (s, SiMe₃), 890 (s, = CH₂), 838 (s, SiMe₃) cm⁻¹; exact mass calcd for C₁₈H₃₂Si 276.2273, found 276.2275.

(-)-Solavetivone ((-)-(2R,SS,ZOR)-2-Isopropenyl-6,10-dimethylspiro[4.5]dec-6-en-8-one, 1).^{9,21,59} A solution of 3,5-dimethylpyrazole (209 *mg,* 2.17 **mmol,30** equiv) and t-BuOH (137 μ L, 107 mg, 1.45 mmol, 20 equiv) in CH₂Cl₂ (2.7 mL) was cooled to -78 "C, whereupon a precipitate formed. Chromyl chloride $(58.7 \mu L, 112 \text{ mg}, 0.724 \text{ mmol}, 10 \text{ equiv})$ was added to this suspension over 5 min. The mixture was stirred for 5 min at -78 'C and then warmed to room temperature. A solution of spiro diene (-)-14 (14.8 mg, 0.0724 mmol, 1.0 equiv) in CH_2Cl_2 (0.20 **mL) was** added rapidly **into** the **reaction** flask. The reaultant **clear,** dark brown solution was stirred at room temperature for 38 h. Dimethyl sulfide (53 μ L, 45 mg, 0.72 mmol, 10 equiv) was added to quench the excess oxidant. The solution was concentrated under a stream of nitrogen to a volume of 1.5 mL. Then ether

(3 **mL)** was added dropwise, and the mixture was stirred for 10 min to complete the precipitation of chromium salts. The mixture wa8 fiitered through a column of Celite (1.0 *cm* **X** 10 *cm)* with ether as eluant. The filtrate was washed with 5% aqueous NaOH, 5% aqueous HCl, and brine, **dried** over auhydroua MgS04(s), filtered, and concentrated. The residue was purified by chromatography on **silica** gel (9.5 mm **X** 160 mm column) with 10% Et₂O in pentane as eluant to afford $(-)$ -solavetivone (1) in 71% yield (11.2 mg, 0.0514 mmol) as a colorless oil.

For $(-)$ -1: TLC R_f 0.34 (20% EtOAc in hexanes); GC t_R 6.32 min (column temperature 160 °C); $[a]^{\text{26}}$ _D -135° (c 0.2326, EtOH) (lit.⁹ -119° (EtOH)); ¹H NMR (CDCl₃, 400 MHz) *δ* 1.00 (d, *J* = 7.2 Hz, 3 H, CH₃CH), 1.53-1.73 (m, 3 H), 1.76 (br s, 3 H, $CH_3C=CH_2$, 1.90-1.98 (m, 2 H), 1.95 (br s, 3 H, CH₃C-CC-O), 2.07-2.17 (m, 2 H), 2.22 (dd, $J = 16.5$, 4.3 Hz, 1 H, HCC--0), 2.50-2.60 (m, 1 H, HCC—C), 2.66 (dd, $J = 16.5$, 4.7 Hz, 1 H, $H_{\rm C}$ HCC—0), 4.74 (br *s*, 2 H, C—CH₂), 5.75 (br *s*, 1 H, C—CHC—0); ¹³C NMR (CDCl₃, 101 MHz) δ 16.035 (C₁₅), 21.040 (C₁₄), 21.432 (C_{13}) , 32.877 (C_3) , 34.498 (C_4) , 39.535 (C_{10}) , 40.897 (C_1) , 43.058 (C_9) , 46.626 (C_2) , 50.154 (C_6) , 108.946 (C_{12}) , 125.386 (C_7) , 146.981 (C_{11}) , 166.372 (C_6) , 198.784 (C_8) ; FT-IR (neat) 3080.2 (w, = CH), 1668.4 (s, conjugated C=0), 1614.1 (m, conjugated C=C), 888.7 (m, =CH2), 832.2 (w) *cm-';* **MS** *m/e* (relative intensity) 218 (M+, **60),** 203 (20), 190 **(20),** 176 (20), 161 (20), 137 *(60),* 121 (22), 108 (60), 84 (100), 68 (59), 55 (10); exact mass calcd for C₁₅H₂₂O 218.1671, found 218.1672.

Acknowledgments. For financial support, we are indebted to the donors of the Petroleum Research Fund, administered by the American Chemical Society; to the National Institutes of Health for the Biomedical Research Support Grant **SO7** RR7041; to the National Science to Academia Sinica We gratefully acknowledge Professor Raymond J. Butcher (Howard University) for *canying* out the X-ray experiment and Dr. David T. Coxon (AFRC Institute of Food Research) for providing **us** the spectra of natural (-)-solavetivone. Council of Republic of China (NSC 80-0208-M007-85); and

Registry No. (-)-1, 54878-25-0; 5, 73890-13-8; (+)-6, 13918-47-3; (-)-7, 74411-02-2; (-)-8, 137895-81-9; (-1-9, 137895-82-0; (-)-lo, 137895-83-1; (-)-ll, 137895-84-2; (+)-12, 137895-85-3; (-)-14, 137941-79-8; 15, 137941-80-1; 16,137895-86-4; **17,** 137895-87-6; 19,137895-88-6.

Supplementary Material Available: **Results** of elemental analyses for compounds (+)-6, (-)-7, (-)-8, (-)-9, (-)-10, (-)-11, (+)-12, (-)-14, **15,** 16, 17, 19, and (-)-l (1 page). Ordering information is given on any current masthead page.